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Nonlinear evolution of unstable fluid interface
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~Received 8 June 2001; revised manuscript received 11 April 2002; published 11 September 2002!

We study the coherent motion of bubbles and spikes in the Richtmyer-Meshkov instability for isotropic
three-dimensional and two-dimensional periodic flows. For equations governing the local dynamics of the
bubble, we find a family of regular asymptotic solutions parametrized by the principal curvature at the bubble
top. The physically significant solution in this family corresponds to a bubble with a flattened surface, not to
a bubble with a finite curvature. The evolution of the bubble front is described and the diagnostic parameters
are suggested.

DOI: 10.1103/PhysRevE.66.036301 PACS number~s!: 47.20.Bp, 47.20.Ma, 47.20.Ky, 52.35.Py
n
t

ur
d

o
co

he
y-
th

es

e
nd
he
id

i

o

t
o-

h

n

er

th
o
n

e-
d.

ith
er-

ns
pa-

em
re-

ry
the
tic
ifi-
ss
ith

th
ikes
-
a-
in
s-

n-
the

pec-
ma-

Ce
Es
I. INTRODUCTION

When a light fluid accelerates a heavy fluid, the misalig
ment of the pressure and density gradients gives rise
instability of the interface, and produces eventually the t
bulent mixing of the fluids@1#. This phenomenon is calle
the Rayleigh-Taylor instability~RTI!, if the acceleration is
sustained, and the Richtmyer-Meshkov instability~RMI!, if
the acceleration is driven by shock or impulsive@2,3#. The
RT-RM turbulent mixing controls many physical and techn
logical processes such as supernova explosion, inertial
finement fusion, flames, etc.@1#. Reliable description of the
turbulent mixing is the basic objective of studies of t
RT-RM instabilities@4–10#. The cascades of energy, the d
namics of small-scale structures, and the dynamics of
large-scale coherent structure are the fundamental issu
be understood.

The large-scale coherent structure occurs in the nonlin
regime of RTI and RMI. It is a periodic array of bubbles a
spikes in the plane normal to the direction of gravity or t
initial shock@1,4,6#. The light fluid penetrates the heavy flu
in bubbles, and the heavy fluid penetrates the light fluid
spikes@1–3#. The secondary instabilities and vorticity@10#
result in singularities. Therefore the nonlinear evolution
the unstable fluid interface is very complicated@1–3#. Start-
ing from the works of Layzer@11# and Garabedian@12# in
1950s, various methods have been developed to study
singularities and the interplay of harmonics in tw
dimensional~2D! Rayleigh-Taylor flows@11–19#. For three-
dimensional RTI a new approach based on group theory
been proposed recently in Refs.@18,19#. The asymptotic 2D
and 3D theories agreed with experiments and simulatio
For the Richtmyer-Meshkov instability, theories@20–22# ex-
plained experimental@1,3# and numerical data@23–28# in the
linear regime; the nonlinear dynamics of RMI is not und
stood well.

Here we study the large-scale coherent motion in
Richtmyer-Meshkov instability and report the theoretical s
lutions, which capture the interplay of harmonics in the no
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linear dynamics of isotropic three- and two-dimensional p
riodic flows. The evolution of the bubble front is describe
It is shown that asymptotically the RM bubbles flatten w
time and the shapes of the Rayleigh-Taylor and Richtmy
Meshkov bubbles differ significantly. The theory explai
existing data qualitatively and establishes the diagnostic
rameters for experiments.

The paper is organized as follows. In Sec. II the probl
is formulated, and previous approaches and results are
viewed. In Sec. III we derive a dynamical system of ordina
differential equations governed by the local dynamics of
nonlinear bubble. In Sec. IV a family of regular asympto
solutions to the system is found, and the physically sign
cant solution in the family is chosen. In Sec. V we discu
the local dynamics of the RM bubbles and compare it w
existing data and with the RT case.

II. THE PROBLEM FORMULATION

In the nonlinear regime of RMI, the interface evolves wi
no external forces, the growth rates of bubbles and sp
decreases with time@1,3#, and the fluid motion becomes in
compressible@7–10#. Based on the experimental observ
tions @8–10,24–28#, we generalized the idea suggested
Ref. @29# and divide the fluid interface into active and pa
sive regions. In the active regions~small scales! the vorticity
is intensive, while the passive regions~large scales! are sim-
ply advected. A significant part of the fluid energy is conce
trated in the large-scale coherent motion. To describe
dynamics of the coherent structure, one can apply the s
tral approach and group theory, and the potential approxi
tion. For fluids with highly contrasting densities~fluid-
vacuum!, the governing equations have the form

DF50,
]F

]t
1

1

2
~“F!2uu5050,

]u

]t
1“u•“Fuu5050, “Fuz51`50. ~1!

Here F(x,y,z,t) is the fluid potential, u(x,y,z,t)
5z* (x,y,t)2z is the scalar function,z* (x,y,t) is the fluid-
free surface, assuming the fluid is located in the regionu
,0, ~x, y, z! are the Cartesian coordinates, andt is time. The
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S. I. ABARZHI PHYSICAL REVIEW E 66, 036301 ~2002!
first of the boundary conditions at the free surface in Eq.~1!
is derived from the equation for momentum conservati
and the second one is derived from the equation of cont
ity. Initially, t5t0 , both geometryz* (x,y,t0) and velocity
n(0)5“F(x,y,z,t0)uz5z* of the free surface are slightly pe
turbed. The initial conditions determine the length scale~i.e.,
spatial period! l, the time scalet;l/un (0)u, and symmetry
of the flow in Eq.~1! @29#. We choose the value of the perio
in the vicinity of the wavelengthlmax, which corresponds to
the mode of fastest growth established in real fluids by s
face tension and viscosity@30#. As a group of symmetry of
the flow in Eq.~1!, we choose a spatial symmorphic grou
with translations in the plane~x, y! and with inversionx→
2x and y→2y, such as hexagonal, square, rectangu
rhombic, or oblique@31#. The coherent structure of bubble
and spikes must be invariant under one of these group
order to be stable under large-scale modulations@18,19#.

To date, no exact analytical solution to the problem~1!
has been found. Several authors@1,29,32–35# have studied
the flow in Eq.~1! using the so-called Layzer-type approa
@11#. Under this approach, the fluid potential is represen
by a single Fourier harmonics. The nonlinear equations
Eq. ~1! are then reexpanded in the lowest order near the
of the bubble or spike and reduced to a system of ordin
differential equations@11,29,32–35#. In two dimensions, Sh-
varts @32# has found an asymptotic solution for the syste
describing the nonlinear RM bubble. Inogamov@33# has in-
tegrated the ODEs and concluded that this regular solutio
a stable node. Mikaelian@34# and Zhang@35# have integrated
the ODEs for a special class of initial conditions and deriv
the same regular asymptotic solution. Zhang@35# has sug-
gested to describe the motion of the spike by a singu
asymptotic solution for the equations. In Ref.@29#, the ODEs
have been integrated in both 3D and 2D cases for a w
class of initial conditions, and the stability analysis has be
performed. It has been shown that the field of the init
velocity determines regular or singular behavior of late-ti
asymptotes@29#. The singular spike dynamics is governed
the initial conditions, in agreement with Ref.@35#. The ve-
locity of the regular bubble decreases asymptotically w
time, and its curvature approaches a finite value indepen
of the initial conditions@29#. This regular Layzer-type solu
tion is not a stable node, as was predicted in Ref.@33#.

Reflecting some important features of RMI dynamics,
Layzer-type approach has, however, a number of limitatio
The most serious disadvantage is that the method does
capture the interplay of harmonics in the nonlinear regi
and fails when the number of harmonics exceeds one@29#.
The properties of the Layzer-type bubble in RMI also ra
some doubts. In single-mode approximation, the curvatur
the nonlinear bubble is the same in the case of susta
~RTI! or impulsive~RMI! acceleration@29#. This equality of
shapes follows from a specific degeneracy of Layzer-t
ODEs @29#, and cannot be a universal nonlinear prope
The RT flow is driven by buoyancy, while RMI is inertia
instability. Since the nonlinear RM bubbles decelerate, t
may not be curved. Remarkably, in many experiments
simulations on RMI a tendency of the bubbles to be flatte
at the top has been observed, but has never been discu
03630
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@8–10,24–28#. Below we show that a multiple harmoni
analysis resolves all these issues.

III. DYNAMICAL SYSTEM

To find the nonlinear solution, we reduce the equations
Eq. ~1! to a dynamical system governing the local dynam
of the bubble as in Refs.@18,19#. To simplify the calcula-
tions, we switch to the frame of references moving with v
locity n(t) in thez direction, wheren(t) is the velocity at the
bubble top in the laboratory frame of references. In the m
ing frame of references, fluid influences an effective acc
eration. In Eq.~1!, the termz]n/]tuz5z must be added on the
left-hand side of the momentum equation, the continu
equation remains unchanged, and the boundary conditio
z51` is (]F/]z)uz51`52n.

For a 3D flow with square symmetry in the plane~x, y!,
the fluid potential is represented by a Fourier series

F5 (
m,n50

`

Fmn~ t !@cos~mkx!cos~nky!

3exp~2kzamn!/kamn1z#,

wherek52p/l is the wave vector,l is the spatial period,
amn5Am21n2, m and n are integers,Fmn5Fnm due to
symmetry, andF0050. The bubble top with coordinate
~0,0,0! is the point of stagnation. The boundary condition
z51` gives (m,n50

` Fmn52n. For x'0, y'0 the free
surface can be expanded as a power ser
z* 7( i , j 50

` z i j (t)x
2i y2 j , with z i j 5z j i and z0050. Substitut-

ing these expressions inz components in the nonlinear equ
tions in Eq. ~1! we reexpand Eq.~1! for x'0, y'0 as a
power series in terms ofx2i y2 j , wherei 1 j 5N51,2,...,̀ is
the order of approximation. In this way we derive a dynam
cal system of ordinary differential equations in terms of s
face variables z i j and moments Ma,b,c(t)
5(m,n50

` Fmn(t)k
a1b1cmanbamn

c with integera, b, andc,

N51, 2Ṁ0z12Ṁ1/21M1
2/250, ż124z1M12M2/250,

~2!

N52, 2Ṁ0z201Ṁ2z1/21Ṁ1z1
21Ṁ3/4!

13M2
2/82M1M3/613M1M2z1110M1

2z1
250,

2Ṁ0z111Ṁ2z112Ṁ1z1
21Ṁ2,2,21/4

13M2
2/42M1M2,2,2116M1M2z1120M1

2z1
250,

ż2026z20M11z1~5M313M2,2,21!/613M2z1
21M4/4!50,

ż1126z11M11z1~M313M2,2,21!16M2z1
21M220/450.

In Eq. ~2! dot indicates time derivative,z15z10 is the prin-
cipal curvature at the bubble top, and the other notations
M15M2,0,21 , M25M2,0,0, M35M4,0,21 , M45M4,0,0, and
M05M0,0,052n ~see Appendix!.
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NONLINEAR EVOLUTION OF UNSTABLE FLUID INTERFACE PHYSICAL REVIEW E66, 036301 ~2002!
The equations in@Eq. ~2!, Appendix# govern the local
dynamics of the bubble as long as the cascade of energ
insignificant and the spatial periodl of the coherent structure
is invariable. MomentsMa,b,c are correlation functions by
physical meaning. They involve infinite series of harmoni
This presentation allows one to perform a multiple harmo
analysis. The local dynamical system~2! cannot be inte-
grated explicitly. At everyN in Eq. ~2! ~see Appendix! the
number of momentsMa,b,c and surface variablesz i j is larger
than the number of equations. A truncation is required to fi
an approximate asymptotic solution. For physical solutio
to the local system, the Fourier amplitudes decay with
crease in their number and the approximations converge

To find a time dependence of the regular asymptotic
lutions in Eq.~2! ~see Appendix! in main order ast/t→`,
we substituteM;ta andz;tb into the ODEs and obtaina
215b50. Therefore for the nonlinear bubbles the surfa
variables zmn become asymptotically time independen
while the momentsMa,b,c , the amplitudesFmn , and veloc-
ity n decay as 1/t @29,32–35#. With this time dependence, th
equations in Eq.~2! ~see Appendix! become algebraic an
seem to be easily resolved. However, the interplay of h
monics in the nonlinear problem~1! and, consequently, th
manner of truncation in the local system~2! are nontrivial
issues@29#.

IV. REGULAR ASYMPTOTIC SOLUTIONS

Retaining only the first-order harmonics in the expre
sions for the moments,F105M1 /k5M2 /k25M0/2, one de-
rives atN51 in Eq.~2! the nonlinear asymptotic solution o
the Layzer type@11,29#. The velocity of the Layzer-type
bubble in Eq.~2! is n51/kt and the curvaturez152k/8
@29#. In second and higher orders of approximation the eq
tions for coefficients in the Layzer-type expansion have
real solutions. This reveals deficiency of the method. Ther
no Layzer-type asymptotic solution, only a Layzer-type fir
order approximation. A similar conclusion has been drawn
Refs.@18#, @19# in the case of RT bubbles.

To find a multiple harmonic description of the bubble m
tion, we apply the following idea. For the flow in Eq.~1!, the
nonlinearity is nonlocal. Singularities determine the interp
of harmonics in the local system and, therefore, the shap
the regular bubble. Assuming the bubble shape is free an
parametrized by the principal curvature~s! at the top, we find
a continuous family of regular asymptotic solutions for Eq
~1! and ~2!. For solutions in this family, the interplay o
harmonics is well captured. The family involves all bubbl
allowed by symmetry of the global flow. The symmetry d
termines the number of the family parameters. We choose
fastest stable solution in the family as the physically sign
cant one.

To construct the family of asymptotic solutions, we u
the manner of truncation as in Refs.@18,19#. At a givenN in
Eq. ~2! ~see Appendix!, let Ne be the number of equation
andNt be the number of variables~the surface variables an
the Fourier amplitudes or independent moments taken
truncation!. The differenceNp5Nt2Ne determines the num
ber of free parameters inNth approximation. AtNp50 the
03630
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solution for the system is a point; atNp51 solutions form a
one-parameter curve, atNp52 solutions form a two-
parameter surface, etc. The number of parametersNp in the
complete system~2! ~see Appendix! must be such that a
every N the asymptotic solutions exist, and asN increases,
they converge. Both criteria are satisfied only if the numb
of parametersNp in the local system is that number require
by symmetry of the global flow. By physical meaning, the
free parameters are the principal curvatures at the bubble
and their position with respect to the axes, soNp<3 @31,36#.
For 3D bubbles with square symmetry as well as for
hexagonal or 2D bubbles the number of free parameter
Eq. ~2! is Np51 @18,19,36#.

At every N in Eq. ~2! ~see Appendix! we takeNt5Ne
11 and establish additional relations between the mome
Then, impressing conditionszmn(t)5zmn , Fmn(t)5wmn /t,
andMa,b,c(t)5ma,b,c /t @or Mn(t)5mn /t#, and keeping the
curvature valuez1 free, we find the velocity, the amplitudes
and the surface variables as functions on this parameter,
one-parameter family of regular asymptotic solutions. F
every N, z152m2/8m1 and 2z1m052m1(11m1). In the
first approximation in Eq.~2!, N51, Ne52 andNt53, and
with the amplitudesF10, F20 retained in the expressions fo
the momentsm052(w101w20)53m1 /k2m2 /k2 and m15
2(2z1 /k)@318(z1 /k)#21; the family of solutions has the
form

z1521/2R, n5~3kR24!@~kR!223kR14#/~kR!3kt,
~3!

F10522~kR22!@~kR!223kR14#/~kR!3kt,

F205~kR24!@~kR!223kR14#/2~kR!3kt.

In the second approximation in Eq.~2!, N52, Ne56 and
Nt57, four harmonics are retained,F10, F11, F20, and
F30, and variablem1 obeys a fourth-order equation wit
coefficients dependent onz1 . Analogously, regular
asymptotic solutions could be found in higher approxim
tions. Figures 1 and 2 show the analytical results. We
scribe the family properties.

In the physical regionkRcr<kR<`, the velocity isn
5 l (kR)/(kt), the Fourier amplitudes decay with increase
their number, the lowest-order amplitude is dominant, a
the approximations converge, Figs. 1, 2~a!–2~b!. The func-
tion l (kR) is a function on the radius of curvature, similar
Eq. ~3!. Over a wide interval ofkR, l (kR) is insensitive to
higher-order terms, Figs. 1 and 2~b!. The critical solution
Rcr;3/k with ncr;0.74/(kt) bounds the physical region: th
bubble cannot be very curved. AtR;Rcr the amplitudes
uF (m11)nu;uFmnu, and for R,Rcr the approximations di-
verge, Fig. 2. The Layzer-type solution can be derived fr
the conditionF2050 in Eq. ~3!. Remarkably, higher-orde
corrections for the velocity of this solution are less than 1
Figs. 1 and 2~b!. The bubble velocity is an increasing func
tion on the radius of curvature, and askR→` the velocity
approaches its maximum valuen` , Fig. 1. For a flattened
bubble inNth approximation, the curvature (z1 /k);0 and
(m111);(z1 /k), so lim

(z /k)→0
(m111)/(z1 /k) is deter-
1
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S. I. ABARZHI PHYSICAL REVIEW E 66, 036301 ~2002!
mined, and the velocity is@n`#N52m1(11m1)/2z1t
'CN /kt, whereCN is a constant. First few approximation
do not give very precise value ofn` , which is more sensi-
tive to terms neglected in the truncation than the velocity
a bubble with a finite curvature. However, the higher-ord
corrections forn` are reasonably small,@n`#N52 /@n`#N51
'11e22, Fig. 2~b!, and up to third-order harmonics, th
solution withkR[` remains smooth and does not blow u
Fig. 2~a!. We roughly estimate the velocity of the flattene
bubble asn`;4/kt. In higher approximations the value o
n` can be determined more accurately.

To analyze stability of the family solutions we slight
perturb zmn→zmn1umn(t), and Ma,b,c→@ma,b,c
1Da,b,c(t)#/t. Substituting these expressions in Eq.~2! and
expanding them for smallD and u, we find Da,b,c(t)
;Aa,b,ct

a and umn(t);Bmnt
b, where Aa,b,c and Bmn are

some constants, and the exponentsa5b are the functions on
the radius of curvature,b5b(kR). Therefore, asymptoti-
cally the velocityun(t)2 l (kR)/(kt)u;tb21 and the curva-
ture uz1(t)11/(2R)u;tb. For stable solutions the real part o
exponentsb must be negative, Re@b#,0.

At every N in Eq. ~2! with Da,b,c(t);Aa,b,ct
b and

umn(t);Bmnt
b, we keep the highest order amplitude unp

turbed and establish additional relations between theDa,b,c
so that the number of independentD andu ~or A’s andB’s!
equalsNe . The exponentsb(kR) are then defined by the
condition that the determinant of the linear algebraic sys
for independentA’s and B’s equals zero. AtN51, D0
5D1 /k5D2 /k2, the exponentb obeys quadratic equatio
with coefficients depending on the curvature, and Re@b#,0
for kR.2. At N52, the exponentb obeys a sixth-order
equation, and Re@b#,0 for kR.3.6, etc. As is seen from Fig
3, solutions withR;Rcr are unstable. AsN increases and
higher-order terms are involved, solutions withR;l/2 lose
stability while solutions withkR→` remain stable. ForkR
[0 the highest exponent is Re@b`#522.42 (N52), so this
bubble flattens in time askR;(t/t) uRe@b`#u. The real value of

FIG. 1. Family of regular asymptotic solutions in RMI. Velocit
n as the function on the radius of curvatureR; k is the wave vector,
t is time,N is order of approximation. Three-dimensional flows wi
square (3Ds) and hexagonal (3Dh) symmetry and two-dimensiona
~2D! flow. Black circles mark the Layzer-type solutions withR
54/k in 3D, andR53/k in 2D.
03630
f
r

,

-

m

b` depends weakly on higher order amplitudes, Fig. 3~at
N51, Re@b`#525/2!. This suggests that the flattening pr
cess is dominated by the lowest-order terms.

To conclude this section for equations governing the lo
dynamics of the RM bubble, we found a continuous fam
of regular asymptotic solutions parametrized by the princi
curvature at the bubble top, and studied the stability of
solutions. The nonlinear solutions are multiple harmonic
lutions. Our analysis can be extended to higher approxim
tions. Over the family, the interplay of harmonics is we
captured, and the lowest-order Fourier amplitude is do
nant. For bubbles with a finite curvature, the velocity is
sensitive to terms neglected in the truncation. These s
tions, however, lose stability when higher-order terms
involved. For a flattened bubble, the velocity is sensitive
terms neglected in the truncation, but the higher-order c
rections are small. This solution is stable, and the flatten
exponent depends weakly on terms of the higher order.
fastest stable solution in the asymptotic family correspo

FIG. 2. Family of regular asymptotic solutions in RMI.~a! Ex-
ponential decay of the absolute value of the Fourier amplitu
Fmn . ~b! Exponential decay of the absolute value of (nN

2nN21)/nN . Three-dimensional flow with square symmetry, 3Ds ;
N is the order of approximation;R is the radius of curvature;k is the
wave vector;Fmax5F10(kR[`). The black circle marks the Layzer
type solution, and the white circle marks the critical solutionR;Rcr .
1-4
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NONLINEAR EVOLUTION OF UNSTABLE FLUID INTERFACE PHYSICAL REVIEW E66, 036301 ~2002!
to a bubble with a flattened surface, not to a bubble wit
finite curvature.

A. Regular asymptotic solutions for 3D flow
with hexagonal symmetry

The obtained results are generalized directly for a 3D fl
with a hexagonal group of invariance. For highly symmet
3D flows ~square, hexagonal! the asymptotic solutions an
their stability behavior coincide except for the difference
the normalization factork, Fig. 1 @37#. The physical reason
of this universality is a near-circular contour of the bubb
@18,19#. To explain this statement, we make the expansion
the free surface@as well the equations in Eq.~1!# in the form
z* 5(m51

` jm(x21y2)m1~other terms of the formq i j x
2i y2 j ,

which break the circularity!. For square symmetry these no
circular terms appear ati 1 j 52m, m is an integer, for ex-
ample,x2y2, (x2y41x4y2); in the case of hexagonal sym
metry they appear ati 1 j 53m, for example, (x2y4

1x4y2). The solutions for square and hexagonal syste
may have a universal form only if the contribution of th
noncircular terms to the dynamics is negligibly small.

The highly symmetric 3D bubbles in RMI have a nea
circular contour and a universal dynamics in the units of
wave vectork, Fig. 1 @37#. For 3D flow with hexagonal sym
metry k54p/)l, and at a fixed value of periodl and at
the same value of the parameterkR, 3D hexagonal bubbles
are slower and narrower than 3D square ones. For a hex
nal bubble withkR[` the highest exponent is Re@b`#5
22.44 atN52.

B. Regular asymptotic solutions for 2D flow

For a 2D flow, the potential is

F~x,z,t !5(m51
` Fm~ t !@exp~2mkz!cos~mkx!/mk1z#,

k52p/l.

Near the top of the bubble the free surface
z* (x,t)5(m51

` zm(t)x2m, and with moments Mn(t)
5(m51

` Fm(t)(km)n, one derives from Eq.~1!

FIG. 3. Stability analysis for the family of regular asymptot
solutions in RMI. Real part of exponentsb as the function on the
radius of curvatureR. Three-dimensional flow with square symm
try, 3Ds . Dashed lines correspond toN51, solid lines correspond
to N52, the black circle marks the Layzer-type solutionRL54/k.
03630
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N51, 2Ṁ0z12Ṁ1/21M1
2/2,50, ż123z1M12M2/250,

~4!

N52, ż225z2M115z1M3/615z1
2M2/21M4/4!50,

2Ṁ0z21Ṁ2z1/21Ṁ1z1
2/21Ṁ3/4!

13M2
2/82M1M3/613M1M2z1/217M1

2z1
2/250.

The 2D and 3D results are similar, and Table I gives so
quantitative values. In the first approximation,N51, the 2D
family of regular asymptotic solutions takes the form

z1521/2R, n53~Rk21!@2~Rk!223Rk13#/4~Rk!3kt,

~5!

F152~2kR23!@2~kR!223kR13#/2~kR!3kt,

F25~kR23!@2~kR!223kR13#/4~kR!3kt.

In 2D family the critical solution isRcr;2/k and ncr
;0.47/(kt), and forkRcr<kR<` the approximations con
verge. The Layzer-type solution hasRL53/k;0.96(l/2) and
nL52/3kt @29,32–35#. As N increases, solutions withR
;l/2 lose stability. For a flattened 2D bubble,kR[`, the
velocity is estimated asn`;2/kt. This solution is stable and
the highest exponent Re@b`#522.27 atN52.

V. DISCUSSION

We have performed a multiple harmonic analysis of t
coherent motion in the Richtmyer-Meshkov instability. O
approach to the problem is an extent of the method de
oped in Refs.@18,19# for the RT flow, and it is based on
group theory. For a periodic array of bubbles and spikes
RMI, we determined symmetry groups, providing stability
the coherent structure under large-scale modulations@18,19#.
Then, using the Fourier expansion and the spatial Taylor
pansion, we derived from the conservation laws a dynam
system of ODEs governing the local dynamics of the bubb
Due to singularities, the interplay of harmonics in the loc
system is a nontrivial issue@29#. To capture the interplay o

TABLE I. Comparison of parameters of the Layzer-type bubb
~velocity nL and curvature radiusRL!, with the flattened bubble
@velocity n` and curvature radiusR;(t/t)Re@b`#/k# for 3D flows
with square, 3Ds , and hexagonal, 3Dh , symmetry as well as 2D
flow in units of wave vectork and spatial periodl.

nLkt kRL n`kt Re@b`#

3Ds 1 4 4 22.42
3Dh 1 4 4 22.44
2D 2/3 3 2 22.27

nLt

~l/2!

RL

~l/2!

n`t

~l/2!
Re@b`#

3Ds 0.32 1.27 1.28 22.42
3Dh 0.28 1.10 1.12 22.24
2D 0.22 0.96 0.66 22.27
1-5
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harmonics, we extended the functional space and took
consideration all bubbles allowed by symmetry of the flo
We found a continuous family of regular asymptotic so
tions and studied the solutions’ stability. For a fixed value
the spatial periodl, the physically significant solution in th
family corresponds to a flattened bubble with radius of c
vature (R/l)→`, more preciselyR;l(t/t) uRe@b`#u, not to a
bubble with a finite curvatureR;(l/2).

A nonuniqueness of regular asymptotic solutions an
separation criterion are well known issues in many fr
boundary problems, such as Rayleigh-Taylor@14–19# or
Taylor-Saffman@38# instabilities. Using conformal mapping
Garabedian was the first to find in Ref.@12# that singularities
result in nonuniqueness of steady solutions for 2D Raylei
Taylor bubbles. Our approach provides physical backgro
for Garabedian’s reasoning@19# and expands Garabedian
idea to 3D and 2D Richtmyer-Meshkov flows@37#. From the
other side, with a particular truncation the dynamical syst
in Eqs. ~2! and ~4! can be reduced to the expansion of t
Layzer type, if at everyN the number of parametersNp50
and the truncation numberNt5Ne @18,19,29#. The Layzer-
type expansion, however, does not capture the interpla
harmonics in the nonlinear dynamics. There is no Layz
type asymptotic solution, only a first-order approximation.
contrast, within the family of solutions, one can easily fi
higher-order corrections to the parameters of the Layzer-t
bubble, Fig. 1.

Based on the linear analysis in Ref.@29#, ~2!, ~4! and on
the foregoing results, we expect the following dynamics
the bubble front in the Richtmyer-Meshkov instability. In
tially, the bubble is almost flat,z1(0)50, and its velocity is
n(0)5n0 . In the linear regime,t!t, the bubble surface
becomes curved,z1(t);2kt/t, and its velocity decreases
n(t)2n0;2n0t/t. For t;t the curvaturez1 reaches an ex
treme value dependent on the initial conditions. Asympto
cally, t/t@1, the bubble flattens,z1(t);2k(t/t)2uRe@b`#u,
and its velocity decay,n(t);C` /kt, where constantsb`

andC` are independent of the initial conditions, Fig. 4. T
bubbles in RMI flatten because they decelerate.

Our conclusions agree qualitatively with the existing da
flattening of the nonlinear bubbles has been observed
many experiments and simulations on RMI@8–10,24–28#.
Owing to the lack of improved diagnostics, we cannot p
form a detailed quantitative comparison with existing da
The bubble displacement is the only diagnostic param

FIG. 4. Schematic plot of the dynamics trajectories for t
Layzer-type bubble~a! and for the flattened bubble~b!. The bubble
curvature isz1 , the velocity isn, the initial velocity isn0 , and the
wave vector isk. The black circle marks the Layzer-type solutio
the black square marks the flattened solution.
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available in experiments and simulations to date. Our an
sis shows that the flattened bubble is significantly faster t
the bubble with a finite curvature~approximately four times
faster in 3D and three times faster in 2D!, Fig. 1. It is hard,
however, to pick up this difference from the experimen
data. Since in both cases the velocity isn;C/kt, then, as-
ymptotically the bubble displacementDh is Dh
;Cl ln(t/t). The logarithmic correction is of the order o
experimental error, and the coefficientC is indistinguishable.
To confirm the validity of our theory, additional diagnost
parameters are required. The flattening of the RM bubbl
described by power-law time dependence, therefore,
bubble curvature can be a reliable diagnostic parameter.
main issue that needs to be checked by experiments is
following. Does the curvature of the RM bubble reach w
time a finite limiting value~the same as in the RT case! or
approach zero? To determine the bubble curvature from
experimental data, one can find a sphere closest to the i
face in the vicinity of the bubble top as in Ref.@39#. This
kind of data analysis is more efficient than calculations
second-order derivatives of the interface. The flattening
ponent Re@b`# can be determined via data presentation
logarithmic scales, ln(R/l) versus ln(t/t).

As is seen from the foregoing, the 2D and 3D bubb
have similar dynamics. Asymptotically in both 2D and 3
cases the bubble curvature isz1(t);2k(t/t)2ub`u, the ve-
locity n(t);C` /kt, and the displacementDh;C`l ln(t/t),
with C`,3D/C`,2D'2 and Re@b`,3D#/Re@b`,2D#'1. To distin-
guish between 2D and 3D dynamics in experiments, a th
dimensional visualization of the flow and measurements
the bubble principal curvatures in thex andy directions are
required. At a fixed value of periodl, 3D bubbles are faste
than 2D bubbles. This suggests that a 2D coherent struc
in RMI would break under modulations into a 3D structur
while the nonlinear 3D bubbles would tend to conserve
near-circular contour@18,19#. A detailed study of the dimen
sional 3D-2D crossover in RMI will be carried out in th
future.

The regular asymptotic solutions in the Richtmye
Meshkov and Rayleigh-Taylor instability have a number
common properties, Figs. 1–3@18,19#. In either RT or RM
cases there is no Layzer-type asymptotic solution, onl
Layzer-type first-order approximation; yet, there is a fam
of asymptotic solutions, and the number of parameters
determined by the symmetry of the flow@18,19#. However,
in contrast to the RM case, the Layzer-type bubble with
finite curvature R;(l/2) approximates well the fastes
stable solution in the RT family@19#. So, the bubble shape i
an important diagnostic parameter, and our theoretical res
could serve as a test for experiments and simulations on
and RMI.

In most experiments on RMI, fluids have close densit
and vorticity influences the mass flux and the pressure
tribution in the flow@8–10,24–28#. These effects do not de
stroy the major qualitative result obtained in the frame of o
idealistic theory. The exponent of flatteningb` may depend,
however, on the density ratio and vorticity. A complete pro
lem has never been studied before and it will be addresse
the future. If fluids have a finite density contrast and t
1-6
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energy cascade is insignificant then we can apply an ana
similar to the foregoing. For a two-fluid system the regu
bubble in RMI flattens asymptotically with time, while th
Layzer-type solution breaks the conservation laws and
quires mass flux through the interface.

To conclude, we outline the limitations of our theoretic
approach. The local analysis is applicable as long as the
ergy cascade is insignificant, and the spatial period of the
or 2D coherent structure in RMI is invariable. The presen
tion in terms of moments~2!, ~4! allows one to describe th
linear regime of the instability@29#, t!t, and to find the
multiple harmonic regular asymptotic solution in the high
nonlinear regime,t@t, Fig. 1 and 2. In the intermediat
regime of the instability,t;t, singularities develop and pro
duce the cascades of energy. The local analysis neither
picts the dispersive properties of the flow fort;t nor de-
scribes the process of generation of high-order harmonic
03630
sis
r

e-

l
n-
D
-

e-

by

singularities. These issues are very important in the field
free-boundary problem@1,13–15# and further theories or
computational methods may be able to resolve them.
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APPENDIX

The expansions of the nonlinear equations in Eq.~1! near
the highly symmetric point of the interface~the top of the
bubble or spike! have the form
(
N51

` S (
s,p,q50

s1p1q5N

@~spq! t1~spq!0#x2sy2p~z* !q1(
i 50

N

Pi (
s,p,q50

s1p1q5N2 l

~spq!1x2sy2p~z* !q

1x(
i 50

N

Ql (
z,p,q50

s1p1q5N2 l

~spq!2x2sy2p~z* !qD 50

for the momentum equation, and

(
N51

` S (
s,p,q50

s1p1q5N

@~spq! t1~spq!0#x2sy2p~z* !q1(
l 50

N

P1 (
s,p,q50

s1p1q5N2 l

~spq!1x2sy2p~z* !q

1(
l 50

N

Ql (
s,p,q50

s1p1q5N2 l

~spq!2x2sy2p~z* !qD 50

for the continuity equation. The coefficients in these expansions have the following form:

~spq! t5
~21!s1p1q

~2s!! ~2p!!q!
Ṁ2s,2p,q21 with ~000!150,

~spq!05
1

2

~21!s1p1q

~2s!! ~2p!!q! S 26M2s,2p,qM0,0,01 (
i , j ,r 50

s,p,q

~3C2s
2i C2p

2 j Cq
pM2i ,2j ,rM2s22i ,2p22 j ,q2r

2C2s
2i 11C2p

2 j Cq
r M2i 12,2j ,p21M2s22i ,2p22 j ,q2r 212C2s

2i C2p
2 j 11Cq

r M2i ,2j 12,r 21M2s22i ,2p22 j ,q2r 21!D
with (000)05(001)050,

~sqp!152
~21!s1p1q

~2s11!! ~2p!!q! S 2M2s12,2p,q21M0,0,01 (
i , j ,r 50

s,p,q

C2s
2i 11C2p

2 j Cq
r M2i 12,2j ,r 21M2s22i ,2p22 j ,q2r D ,

~sqp!252
~21!s1p1q

~2s!! ~2p11!!q! S 2M2s,2p12,q21M0,0,01 (
i , j ,r 50

s,p,q

C2s
2i C2p

2 j 11Cq
r M2i ,2j 12,r 21M2s22i ,2p22 j ,q2r D

with (000)15(000)250,

~sp0! t5 żsp with ~spq! t50 for all qÞ0;
1-7
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~sqp!05
~21!s1p1q

~2s11!! ~2p!!q! S 22M2s12,2p,q21M0,0,01 (
i , j ,r 50

s,p,q

C2s
2 j C2p

2 j Cq
r M2i ,2j ,r 21M2s22i ,2p22 j ,q2r D ,

~sqp!152
~21!s1p1q

~2s11!! ~2p!!q!
M2s12,2p,q21 with ~sqp!252

~21!s1p1q

~2s!l ~2p11!lq!
M2s,2p12,q21

with (000)050, (000)152M2,0,21 and (000)252M0,2,21 ;

P15(
l 50

l

2i z i ,l 2 ix
2i y~ l 2 i !, Ql5(

i 50

l

2~ l 2 i !z i ,l 2 ix
2i y2~ l 2 i ! with P05Q050,

z* 5(
l 50

`

(
l 50

l

z i ,l 2 ix
2i y2~ l 2 i ! with z0050.

In the above expressions, dot marks time derivative,Cq
r 5q!/ r !(q2r )!, N is the order of approximation, andN, s, p, q, i, j,

r, l , are integers. In the case of square symmetryMa,b,c5Mb,a,c andMa12,b,c211Ma,b12,c215Ma,b,c11 .
For a flow in a gravity field, the termg(t)zuz5z is added on the left-hand side of the momentum equation in Eq.~1!, and the

coefficient (001)05g(t). The case ofg(t)5g.0 corresponds to the Rayleigh-Taylor instability.
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