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Nonlinear evolution of unstable fluid interface
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We study the coherent motion of bubbles and spikes in the Richtmyer-Meshkov instability for isotropic
three-dimensional and two-dimensional periodic flows. For equations governing the local dynamics of the
bubble, we find a family of regular asymptotic solutions parametrized by the principal curvature at the bubble
top. The physically significant solution in this family corresponds to a bubble with a flattened surface, not to
a bubble with a finite curvature. The evolution of the bubble front is described and the diagnostic parameters
are suggested.
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I. INTRODUCTION linear dynamics of isotropic three- and two-dimensional pe-
riodic flows. The evolution of the bubble front is described.
When a light fluid accelerates a heavy fluid, the misalign-It is shown that asymptotically the RM bubbles flatten with
ment of the pressure and density gradients gives rise théme and the shapes of the Rayleigh-Taylor and Richtmyer-
instability of the interface, and produces eventually the turMeshkov bubbles differ significantly. The theory explains
bulent mixing of the fluidg1]. This phenomenon is called €Xisting data qualitatively and establishes the diagnostic pa-
the Rayleigh-Taylor instabilitfRTI), if the acceleration is rameters for experiments.
sustained, and the Richtmyer-Meshkov instabi(@®M!), if The paper is organized as follows. In Sec. Il the problem
the acceleration is driven by shock or impulsi3]. The is formulated, and previous approaches and results are re-
RT-RM turbulent mixing controls many physical and techno-Vviewed. In Sec. lll we derive a dynamical system of ordinary
logical processes such as supernova explosion, inertial coslifferential equations governed by the local dynamics of the
finement fusion, flames, etfl]. Reliable description of the nonlinear bubble. In Sec. IV a family of regular asymptotic
turbulent mixing is the basic objective of studies of thesolutions to the system is found, and the physically signifi-
RT-RM instabilities[4—10]. The cascades of energy, the dy- cant solution in the family is chosen. In Sec. V we discuss
namics of small-scale structures, and the dynamics of théhe local dynamics of the RM bubbles and compare it with
large-scale coherent structure are the fundamental issues @¥isting data and with the RT case.
be understood.
The large-scale coherent structure occurs in the nonlinear Il. THE PROBLEM FORMULATION

regime of RTI and RMI. It is a periodic array of bubbles and ) ) ) ,
spikes in the plane normal to the direction of gravity or the In the nonlinear regime of RMI, the interface evolves W[th
initial shock[1,4,6]. The light fluid penetrates the heavy fluid N© €xternal forces, the growth rates of bubbles and spikes

in bubbles, and the heavy fluid penetrates the light fluid indecreases with timgd, 3], and the fluid motion becomes in-
spikes[1—3]. The secondary instabilities and vorticiigo] ~ cOmPressibleg7-10]. Based on the experimental observa-

result in singularities. Therefore the nonlinear evolution ofions [8-10,24—28 we generalized the idea suggested in
the unstable fluid interface is very complicafad-3]. Start-  Ref-[29] and divide the fluid interface into active and pas-
ing from the works of Layzef11] and Garabediafl2] in sive regions. In_the active r_eglo(sr_nall scalesthe vorticity
1950s, various methods have been developed to study tr® Intensive, while the passive regiotiarge scalesare sim-
singularites and the interplay of harmonics in two- ply adv_ected. A significant part of the flu!d energy is concen-
dimensional2D) Rayleigh-Taylor flowg11—19. For three- trated in the large-scale coherent motion. To describe the
dimensional RTI a new approach based on group theory hdd/namics of the coherent structure, one can apply the spec-
been proposed recently in Refd8,19. The asymptotic 2D tral approach_ and group theory, and the potentlg[ approxima-
and 3D theories agreed with experiments and simulationdion- For fluids with highly contrasting densitiegluid-
For the Richtmyer-Meshkov instability, theorig20—27 ex- ~ Vacuum, the governing equations have the form
plained experimentdll,3] and numerical datf23—-2§ in the b 1
linear regime; the nonlinear dynamics of RMI is not under- AD=0, —+=(VP)?,_,=0,
stood well. at = 2
Here we study the large-scale coherent motion in the 20

Richtmyer-Meshkov instability and report the theoretical so- _ _
lutions, which capture the interplay of harmonics in the non- EJFV&V(D'":O_O' VO|p- =0, @
Here &(x,y,z,t) is the fluid potential, 6(x,y,z,t)

*Email address: snezha@ams.sunysb.edu; present address: Centez* (X,Y,t) —z is the scalar functiorz* (x,y,t) is the fluid-
for Turbulence Research, Stanford University, Bldg. 500, 488 Esfree surface, assuming the fluid is located in the region
condido Mall, Stanford, CA 94305-3030. <0, (x, y, 2 are the Cartesian coordinates, dnsltime. The
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first of the boundary conditions at the free surface in @y. [8-10,24-28 Below we show that a multiple harmonic
is derived from the equation for momentum conservationanalysis resolves all these issues.

and the second one is derived from the equation of continu-

ity. Initially, t=ty, both geometryz*(x,y,t;) and velocity IIl. DYNAMICAL SYSTEM
YO=Vd(x,y,z1t0)|,-+ Of the free surface are slightly per-
turbed. The initial conditions determine the length sc¢ate,
spatial periodl \, the time scaler~\/|v(?)|, and symmetry
of the flow in Eq.(1) [29]. We choose the value of the period
in the vicinity of the wavelength .., Which corresponds to
the mode of fastest growth established in real fluids by sur
face tension and viscosify80]. As a group of symmetry of

To find the nonlinear solution, we reduce the equations in
Eqg. (1) to a dynamical system governing the local dynamics
of the bubble as in Refd18,19. To simplify the calcula-
tions, we switch to the frame of references moving with ve-
locity v(t) in thez direction, wherev(t) is the velocity at the
bubble top in the laboratory frame of references. In the mov-

. : ; ing frame of references, fluid influences an effective accel-
the flow in Eq.(1), we choose a spatial symmorphic group eration. In Eq(1), the termzdv/dt|,—, must be added on the

with translations in the plané&, y) and with inversiorx— lefi-hand side of th i i th tinuit
—x and y— -y, such as hexagonal, square, rectangular,e -hand side of the momentum equation, the continuity

rhombic, or obliqug 31]. The coherent structure of bubbles eq“aﬁof‘ remains unchanged, and the boundary condition at
and spikes must be invariant under one of these groups h- TS (‘?q)/&zﬂz.:”j: S .
order to be stable under large-scale modulatidi&19. For.a 3D f'°.W V.V'th square symmetry in Fhe pl"’.‘be Y.

To date, no exact analytical solution to the probléth the fluid potential is represented by a Fourier series
has been found. Several auth¢is29,32—3% have studied o
the flow in Eq.(1) using the so-called Layzer-type approach O= 2 @, (t)[cog mkx)cog nky)
[11]. Under this approach, the fluid potential is represented mnzo "
by a single Fourier harmonics. The nonlinear equations in
Eq. (1) are then reexpanded in the lowest order near the top Xexp —kzamn/kamnt 2],
of the bubble or spike and reduced to a system of ordinary . _ _ )
differential equation§11,29,32—3% In two dimensions, Sh- Wherek=2m/\ is the wave vectors is the spatial period,
varts[32] has found an asymptotic solution for the system@mn=VM“~+n%, m andn are integers®y,=®,, due to
describing the nonlinear RM bubble. Inogan®3] has in- ~ Symmetry, and®q,=0. The bubble top with coordinates
tegrated the ODEs and concluded that this regular solution i€2.0.0 is the point of stagnation. The boundary condition at
a stable node. Mikaeligi4] and Zhand35] have integrated 2=+ gives =, ,_o®y,=—». For x~0, y=0 the free
the ODEs for a special class of initial conditions and derivedsurface can be expanded as a power series,
the same regular asymptotic solution. ZhdB§] has sug- Z*iiszoiij(t)xz'yz', with £j;={;;i and {po=0. Substitut-
gested to describe the motion of the spike by a singulaing these expressions mcomponents in the nonlinear equa-
asymptotic solution for the equations. In Rgf9], the ODEs  tions in Eq.(1) we reexpand Eq(1) for x~0, y=0 as a
have been integrated in both 3D and 2D cases for a widpower series in terms of'y?/, wherei+j=N=1,2,...¢ is
class of initial conditions, and the stability analysis has beerthe order of approximation. In this way we derive a dynami-
performed. It has been shown that the field of the initialcal system of ordinary differential equations in terms of sur-
velocity determines regular or singular behavior of late-timeface variables g, and moments M, o(t)
asymptote$29]. The singular spike dynamics is governed by =37 @ (1)k3"P*m@nPal with integera, b, andc,
the initial conditions, in agreement with R¢B85]. The ve- '
locity of the regular bubble decreases asymptotically withN=1, —M¢;—M/2+ Mi/zzo, {1~ 4L M—M,/2=0,

time, and its curvature approaches a finite value independent 2)
of the initial conditiong[29]. This regular Layzer-type solu-
tion is not a stable node, as was predicted in R&3). N=2 —M Mol 24 Ma£2+ Mof4l
Reflecting some important features of RMI dynamics, the ' of20t Ml 141 e
Layzer-type approach has, however, a number of limitations. +3M3/8—MMy/6+3M My, +10M272=0,

The most serious disadvantage is that the method does not
capture the interplay of harmonics in the nonlinear regime
and fails when the number of harmonics exceeds [@%%

The properties of the Layzer-type bubble in RMI also raise +3M3/4—M My, 1+ 6M My +20M2£2=0,
some doubts. In single-mode approximation, the curvature of .
the nonlinear bubble is the same in the case of sustaine
(RTI) or impulsive(RMI) acceleratiorf29]. This equality of 20~ 6420M1+ 51(5M3+3M2,2,_1)/6+3M2ﬁ+ M,/41=0,
shapes follows from a specific degeneracy of Layzer-type

ODEs [29], and cannot be a universal nonlinear property. {1;—6{;;M1+ 51(M3+3M2,2'_1)+6M2ﬁ+M22014=0.

The RT flow is driven by buoyancy, while RMI is inertial

instability. Since the nonlinear RM bubbles decelerate, theyn Eg. (2) dot indicates time derivative,,;= {44 is the prin-
may not be curved. Remarkably, in many experiments andipal curvature at the bubble top, and the other notations are
simulations on RMI a tendency of the bubbles to be flattened ;=M o_1, M;=My 0, M3=Myg_1, My=My0,, and

at the top has been observed, but has never been discus9dg= M, o= — v (see Appendix

—Mola+ Myl +2M 5+ I\'/|2,2,71/4
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The equations ifEq. (2), Appendi govern the local solution for the system is a point; hi,=1 solutions form a
dynamics of the bubble as long as the cascade of energy @ne-parameter curve, al,=2 solutions form a two-
insignificant and the spatial periadof the coherent structure parameter surface, etc. The number of parametgra the
is invariable. MomentdM, , . are correlation functions by complete systen{2) (see Appendix must be such that at
physical meaning. They involve infinite series of harmonics.every N the asymptotic solutions exist, and Bsincreases,
This presentation allows one to perform a multiple harmoniahey converge. Both criteria are satisfied only if the number
analysis. The local dynamical syste(@ cannot be inte- of parameter&\, in the local system is that number required
grated explicitly. At everyN in Eq. (2) (see Appendixthe by symmetry of the global flow. By physical meaning, these
number of momentdl , , . and surface variable; is larger  free parameters are the principal curvatures at the bubble top
than the number of equations. A truncation is required to findand their position with respect to the axesNyp=<3 [31,36.
an approximate asymptotic solution. For physical solutiong=or 3D bubbles with square symmetry as well as for 3D
to the local system, the Fourier amplitudes decay with in-hexagonal or 2D bubbles the number of free parameters in
crease in their number and the approximations converge. Eq.(2) is N,=1 [18,19,34.

To find a time dependence of the regular asymptotic so- At every N in Eq. (2) (see Appendix we take N;=Ng
lutions in Eq.(2) (see Appendixin main order ag/7— o, + 1 and establish additional relations between the moments.
we substituteM ~t and {~t" into the ODEs and obtaia  Then, impressing condition&,(t) = Zmn: Pmn(t) = @mn/t,
—1=Db=0. Therefore for the nonlinear bubbles the surfaceandM, ;, .(t)=m,y, ./t [or M,(t)=m,/t], and keeping the
variables {,, become asymptotically time independent, curvature valug; free, we find the velocity, the amplitudes,
while the momentM, j, ., the amplitudesb,,, and veloc-  and the surface variables as functions on this parameter, i.e.,
ity v decay as 1/[29,32—35. With this time dependence, the one-parameter family of regular asymptotic solutions. For
equations in Eq(2) (see Appendix become algebraic and everyN, ¢;=—m,/8m, and 2;my=—m,(1+m,). In the
seem to be easily resolved. However, the interplay of harfirst approximation in Eq(2), N=1, N,=2 andN,=3, and
monics in the nonlinear probleitl) and, consequently, the with the amplitudesb,,, ®,, retained in the expressions for
manner of truncation in the local systef®) are nontrivial  the momentsmy=2(¢1o+ @0) =3m,; /k—m,/k? and m;=
issueq29]. —(2£1/K)[3+8(¢1/k)]—1; the family of solutions has the

form

IV. REGULAR ASYMPTOTIC SOLUTIONS {1=—1/2R, v=(3kR— 4)[(kR)2—3kR+ 4]/(kR)3kt,

Retaining only the first-order harmonics in the expres- ©)
sions for the momentsh ;o=M, /k=M,/k?=M /2, one de-
rives atN=1 in Eq.(2) the nonlinear asymptotic solution of D 19= — 2(kR—2)[ (kR)?~ 3kR+4]/(kR)3kt,
the Layzer type[11,29. The velocity of the Layzer-type
bubble in Eq.(2) is v=1/kt and the curvature’,= —k/8 ® 5= (kR—4)[ (kR)*~3kR+41/2(kR)kt.

[29]. In second and higher orders of approximation the equa-
tions for coefficients in the Layzer-type expansion have ndn the second approximation in E(), N=2, N.=6 and
real solutions. This reveals deficiency of the method. There i&¢=7, four harmonics are retaine®y, ®1;, 5, and
no Layzer-type asymptotic solution, only a Layzer-type first-®30, and variablem, obeys a fourth-order equation with
order approximation. A similar conclusion has been drawn ircoefficients dependent on{;. Analogously, regular
Refs.[18], [19] in the case of RT bubbles. asymptotic solutions could be found in higher approxima-
To find a multiple harmonic description of the bubble mo-tions. Figures 1 and 2 show the analytical results. We de-
tion, we apply the following idea. For the flow in E(), the  scribe the family properties.
nonlinearity is nonlocal. Singularities determine the interplay In the physical regiorkR,<kRs=x, the velocity isv
of harmonics in the local system and, therefore, the shape of | (kR)/(kt), the Fourier amplitudes decay with increase in
the regular bubble. Assuming the bubble shape is free and f§eir number, the lowest-order amplitude is dominant, and
parametrized by the principal curvat(seat the top, we find the approximations converge, Figs. 1g)2-2(b). The func-
a continuous family of regular asymptotic solutions for Egs.tion I (kR) is a function on the radius of curvature, similar to
(1) and (2). For solutions in this family, the interplay of Eg. (3). Over a wide interval okR, I(kR) is insensitive to
harmonics is well captured. The family involves all bubbleshigher-order terms, Figs. 1 andhk. The critical solution
allowed by symmetry of the global flow. The symmetry de- R~ 3/k with v,~0.74/(kt) bounds the physical region: the
termines the number of the family parameters. We choose thieubble cannot be very curved. R~R. the amplitudes
fastest stable solution in the family as the physically signifi-|® - 1)n|~|®mal, and for R<R, the approximations di-
cant one. verge, Fig. 2. The Layzer-type solution can be derived from
To construct the family of asymptotic solutions, we usethe condition®,,=0 in Eq. (3). Remarkably, higher-order
the manner of truncation as in Ref48,19. At a givenN in corrections for the velocity of this solution are less than 1%,
Eq. (2) (see Appendix let N, be the number of equations Figs. 1 and ). The bubble velocity is an increasing func-
andN; be the number of variabldthe surface variables and tion on the radius of curvature, and kR— o the velocity
the Fourier amplitudes or independent moments taken foapproaches its maximum value,, Fig. 1. For a flattened
truncation. The differenceN,=N;— N, determines the num- bubble inNth approximation, the curvature{/k)~0 and
ber of free parameters iNth approximation. AtN,=0 the  (m;+1)~({1/k), so Iim(gl/k)ﬁo(mpL 1)/(¢1/k) is deter-
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Vkt

D.:l D.=2 D.=3 U.:4 I/kR

FIG. 1. Family of regular asymptotic solutions in RMI. Velocity  (a)
v as the function on the radius of curvatiRek is the wave vector,
tis time,N is order of approximation. Three-dimensional flows with
square (3D) and hexagonal (3) symmetry and two-dimensional
(2D) flow. Black circles mark the Layzer-type solutions wikh
=4/ in 3D, andR=3/k in 2D. 27

mined, and the velocity is[v.,]y=—my(1+m;)/2{;t
~Cy/kt, whereCy is a constant. First few approximations -¢y
do not give very precise value of,, which is more sensi-
tive to terms neglected in the truncation than the velocity of ™
a bubble with a finite curvature. However, the higher-order_ |
corrections forv,, are reasonably smally. |n=2/[ Vo In=1
~1+e 2, Fig. Ab), and up to third-order harmonics, the -2}
solution withkR=0c0 remains smooth and does not blow up,
Fig. 2(a). We roughly estimate the velocity of the flattened ~**"
bubble asv,,~4/kt. In higher approximations the value of ()
v,, can be determined more accurately.

To analyze stability of the family solutions we slightly ~ FIG. 2. Family of regular asymptotic solutions in RM&) Ex-
perturd L= Lt Omn(t), and Mab.c—[Mapc ponential decay of the absolute value of the Fourier amplitudes

+A,,o(1)]/t. Substituting these expressions in E2).and ~ ®mn- (0) Exponential decay of the absolute value ofy(
expénding them for smald and 6, we find A, o(t) —wvn-1)/vy. Three-dimensional flow with square symmetry, ;3D

~Aapot® and fun(t)~Bmdt?, where A,y and By, are N is the order of approximatiomR is the radius of curvaturdgis the

i wave vector® ,.,=Po(kR=2). The black circle marks the Layzer-
some C(.)nStants’ and the exponants3 are the functions O,n type solution, and the white circle marks the critical soluti®f R, .
the radius of curvature=B(kR). Therefore, asymptoti-

cally the velocity|»(t) —I(kR)/(kt)|~t#"* and the cuva- 5 gepends weakly on higher order amplitudes, Figa8
ture|£,(t) + 1/(2R)| ~tA. For stable solutions the real partof \— 1 R¢g,]=—5/2). This suggests that the flattening pro-
exponents3 must be negative, Rg]<0. cess is dominated by the lowest-order terms.

At every N in Eq. (2) with Aa,b,c(t)NAa,b_,ct'B and To conclude this section for equations governing the local
Omn(t) ~Bpot”, we keep the highest order amplitude unper-gynamics of the RM bubble, we found a continuous family
turbed and establish additional relations between&hg .  of regular asymptotic solutions parametrized by the principal
so that the number of independehtand ¢ (or A's andB's)  ¢yrvature at the bubble top, and studied the stability of the
equalsNe. The exponentg3(kR) are then defined by the gojutions. The nonlinear solutions are multiple harmonic so-
condition that the determinant of the linear algebraic systenjtions. Our analysis can be extended to higher approxima-
for independentA's and B's equals zero. AtN=1, Ag  tions. Over the family, the interplay of harmonics is well
=A;/k=A,/k? the exponenf3 obeys quadratic equation captured, and the lowest-order Fourier amplitude is domi-
with coefficients depending on the curvature, andR€0  npant. For bubbles with a finite curvature, the velocity is in-
for kR>2. At N=2, the exponeni3 obeys a sixth-order sensitive to terms neglected in the truncation. These solu-
equation, and R@]<0 for kR>3.6, etc. As is seen from Fig. tions, however, lose stability when higher-order terms are
3, solutions withR~R,, are unstable. AN increases and involved. For a flattened bubble, the velocity is sensitive to
higher-order terms are involved, solutions wRh-\/2 lose  terms neglected in the truncation, but the higher-order cor-
stability while solutions wittkR— o remain stable. FOKR  rections are small. This solution is stable, and the flattening
=0 the highest exponent is R&.]=—-2.42 (N=2), so this exponent depends weakly on terms of the higher order. The
bubble flattens in time dsR~(t/T)‘Re[ﬁw]‘. The real value of fastest stable solution in the asymptotic family corresponds

4—

In |(vy - va-1) /i |
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TABLE I. Comparison of parameters of the Layzer-type bubble
T RC[B] 3D; N=12 (velocity v, and curvature radiu®, ), with the flattened bubble
[velocity v,. and curvature radiu®~ (t/7)R92=l/k] for 3D flows
with square, 3D, and hexagonal, 3R symmetry as well as 2D
flow in units of wave vectok and spatial period.

S

v kt kR VoKt Re B.]
3D 1 4 4 —2.42
3Dy 1 4 4 —2.44
2D 2/3 3 2 -2.27
yt R vt
= 2 Re -]
(N2) (\2) (N/2)
3D 0.32 1.27 1.28 —2.42
FIG. 3. Stability analysis for the family of regular asymptotic 3p, 0.28 1.10 1.12 —2924
solutions in RMI. Real part of exponengas the function on the 5 0.22 0.96 0.66 _297

radius of curvaturdR. Three-dimensional flow with square symme-
try, 3D;. Dashed lines correspond =1, solid lines correspond
to N=2, the black circle marks the Layzer-type solutiep=4/k.

N=1, —Mgl1—M/2+M?2/2,=0, ;—3¢M;—M,/2=0,
to a bubble with a flattened surface, not to a bubble with a (4)
finite curvature. )
N=2, £,—5{,M;+5{My/6+572M,/2+M,/41=0,
A. Regular asymptotic solutions for 3D flow
with hexagonal symmetry —Molo+ Myl 1/2+ M L2124+ M 4/4!

The obtained results are generalized directly for a 3D flow
with a hexagonal group of invariance. For highly symmetric
3D flows (square, hexagonathe asymptotic solutions and The 2D and 3D results are similar, and Table | gives some
their stability behavior coincide except for the difference ingyantitative values. In the first approximatiot=1, the 2D

the normalization factok, Fig. 1[37]. The physical reason family of regular asymptotic solutions takes the form
of this universality is a near-circular contour of the bubble

[18,19. To explain this statement, we make the expansion of;;= —1/2R, »=3(Rk—1)[2(Rk)?>—3Rk+ 3]/4(Rk)%kt,

+3M3/8— M My/6+3M My /2+ TM3£2/2=0.

the free surfacgas well the equations in E¢l)] in the form (5)
Z¥ =37 1 En(X2+y?) ™+ (other terms of the formi;;x*'y?,

which break the circularity For square symmetry these non- @ ;= — (2kR—3)[2(kR)*— 3kR+3]/2(kR)°kt,
circular terms appear at-j=2m, mis an integer, for ex-

ample,x?y?, (x?y*+x*y?); in the case of hexagonal sym- ®,=(kR—3)[2(kR)*~ 3kR+ 3]/4(kR)°kt.

metry they appear ati+j=3m, for example, k°y* _ - o

+x%?). The solutions for square and hexagonal system& 2D family the critical solution isRy~2/k and v

may have a universal form only if the contribution of the ~0-47/kt), and forkRy<kR=< the approximations con-

noncircular terms to the dynamics is negligibly small. verge. The Layzer-type solution hBg=3/k~0.96(/2) and
The highly symmetric 3D bubbles in RMI have a near- »o=2/3kt [29,32-33. As N increases, solutions withR

circular contour and a universal dynamics in the units of the™A/2 lose stability. For a flattened 2D bubbleR=, the

wave vectork, Fig. 1[37]. For 3D flow with hexagonal sym- veloc_lty is estimated as,,~ 2/kt. This solution is stable and

metry k=4=/v3\, and at a fixed value of period and at  the highest exponent R&.|=—2.27 atN=2.

the same value of the parametd® 3D hexagonal bubbles

are slower and narrower than 3D square ones. For a hexago- V. DISCUSSION
nal bubble withkR=o the highest exponent i = . . .
-2 42 atN :Vg - 'ghest exp 's Be.] We have performed a multiple harmonic analysis of the

coherent motion in the Richtmyer-Meshkov instability. Our
approach to the problem is an extent of the method devel-

B. Regular asymptotic solutions for 2D flow oped in Refs[18,19 for the RT flow, and it is based on

For a 2D flow, the potential is group theory. For a periodic array of bubbles and spikes in
. RMI, we determined symmetry groups, providing stability of
D(x,z,1) =21 Pp(t)[exp(—mk2cog mkx)/mk+z], the coherent structure under large-scale modulafib8s 9.
k=2m/\. Then, using the Fourier expansion and the spatial Taylor ex-

pansion, we derived from the conservation laws a dynamical
Near the top of the bubble the free surface issystem of ODEs governing the local dynamics of the bubble.
(1) =27_ 1 {m()x®™,  and with moments M(t) Due to singularities, the interplay of harmonics in the local
=37 _1Pn(t)(km)", one derives from Eq.l) system is a nontrivial issue9]. To capture the interplay of
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Av/v available in experiments and simulations to date. Our analy-
sis shows that the flattened bubble is significantly faster than
the bubble with a finite curvatur@pproximately four times
b faster in 3D and three times faster in RFig. 1. It is hard,
however, to pick up this difference from the experimental
» g data. Since in both cases the velocityvis C/kt, then, as-
Cl/k ymptotically the bubble displacementAh is Ah
~CM\ In(t/7). The logarithmic correction is of the order of
FIG. 4. Schematic plot of the dynamics trajectories for theexPe“m.emaI error'_ gnd the coefficiedis inqi_StingL'i_Shable',
Layzer-type bubbléa) and for the flattened bubbl). The bubble 10 confirm the validity of our theory, additional diagnostic
curvature is¢,, the velocity isv, the initial velocity isv,, and the ~ Parameters are required. The flattening of the RM bubble is
wave vector isk. The black circle marks the Layzer-type solution; described by power-law time dependence, therefore, the
the black square marks the flattened solution. bubble curvature can be a reliable diagnostic parameter. The
main issue that needs to be checked by experiments is the
harmonics, we extended the functional space and took intfollowing. Does the curvature of the RM bubble reach with
consideration all bubbles allowed by symmetry of the flow.time a finite limiting value(the same as in the RT caser
We found a continuous family of regular asymptotic solu-approach zero? To determine the bubble curvature from the
tions and studied the solutions’ stability. For a fixed value ofexperimental data, one can find a sphere closest to the inter-
the spatial period, the physically significant solution in the face in the vicinity of the bubble top as in R¢B9]. This
family corresponds to a flattened bubble with radius of curkind of data analysis is more efficient than calculations of
vature R/\)—o0, more preciseI)R~)\(t/T)‘Re['3°°]‘, nottoa second-order derivatives of the interface. The flattening ex-
bubble with a finite curvatur®-~(\/2). ponent REB.] can be determined via data presentation in
A nonuniqueness of regular asymptotic solutions and dogarithmic scales, If/\) versus In{/7).
separation criterion are well known issues in many free- As is seen from the foregoing, the 2D and 3D bubbles
boundary problems, such as Rayleigh-Tay[d4—19 or  have similar dynamics. Asymptotically in both 2D and 3D
Taylor-Saffman 38] instabilities. Using conformal mapping, cases the bubble curvature gj§(t)~—k(t/r)*|/3x‘, the ve-
Garabedian was the first to find in Rg12] that singularities  locity »(t)~C../kt, and the displacemeth~ C_\ In(t/7),
result in nonuniqueness of steady solutions for 2D Rayleighwith C.. 35/C.. ,p~2 and R€B. 3p]/RE B 2p]~ 1. To distin-
Taylor bubbles. Our approach provides physical backgrounguish between 2D and 3D dynamics in experiments, a three-
for Garabedian’s reasonind9] and expands Garabedian’s dimensional visualization of the flow and measurements of
idea to 3D and 2D Richtmyer-Meshkov flo87]. From the  the bubble principal curvatures in tixeandy directions are
other side, with a particular truncation the dynamical systenmrequired. At a fixed value of perios, 3D bubbles are faster
in Egs. (2) and(4) can be reduced to the expansion of thethan 2D bubbles. This suggests that a 2D coherent structure
Layzer type, if at everN the number of parametel$,=0  in RMI would break under modulations into a 3D structure,
and the truncation numbeN;=N, [18,19,29. The Layzer- while the nonlinear 3D bubbles would tend to conserve a
type expansion, however, does not capture the interplay afear-circular contou18,19. A detailed study of the dimen-
harmonics in the nonlinear dynamics. There is no Layzersional 3D-2D crossover in RMI will be carried out in the
type asymptotic solution, only a first-order approximation. Infuture.
contrast, within the family of solutions, one can easily find The regular asymptotic solutions in the Richtmyer-
higher-order corrections to the parameters of the Layzer-typ#eshkov and Rayleigh-Taylor instability have a number of
bubble, Fig. 1. common properties, Figs. 1-{38,19. In either RT or RM
Based on the linear analysis in RE29], (2), (4) and on  cases there is no Layzer-type asymptotic solution, only a
the foregoing results, we expect the following dynamics ofLayzer-type first-order approximation; yet, there is a family
the bubble front in the Richtmyer-Meshkov instability. Ini- of asymptotic solutions, and the number of parameters is
tially, the bubble is almost flag;(0)=0, and its velocity is determined by the symmetry of the fldqi8,19. However,
v(0)=vq. In the linear regimetf<r, the bubble surface in contrast to the RM case, the Layzer-type bubble with a
becomes curved],(t)~—kt/7, and its velocity decreases, finite curvature R~(\/2) approximates well the fastest
v(t) — vy~ — vot/ 7. Fort~ 7 the curvature; reaches an ex- stable solution in the RT familj19]. So, the bubble shape is
treme value dependent on the initial conditions. Asymptoti-an important diagnostic parameter, and our theoretical results
cally, t/7>1, the bubble flattens{,(t)~—k(t/7)"IR42=l could serve as a test for experiments and simulations on RTI
and its velocity decayp(t)~C.,/kt, where constantg,,  and RMI.
andC,, are independent of the initial conditions, Fig. 4. The In most experiments on RMI, fluids have close densities
bubbles in RMI flatten because they decelerate. and vorticity influences the mass flux and the pressure dis-
Our conclusions agree qualitatively with the existing dataitribution in the flow[8—-10,24—-28 These effects do not de-
flattening of the nonlinear bubbles has been observed istroy the major qualitative result obtained in the frame of our
many experiments and simulations on RMI-10,24—-28 idealistic theory. The exponent of flattenigg may depend,
Owing to the lack of improved diagnostics, we cannot per-however, on the density ratio and vorticity. A complete prob-
form a detailed quantitative comparison with existing datalem has never been studied before and it will be addressed in
The bubble displacement is the only diagnostic parameteihe future. If fluids have a finite density contrast and the
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energy cascade is insignificant then we can apply an analysg@ngularities. These issues are very important in the field of
similar to the foregoing. For a two-fluid system the regularfree-boundary problenj1,13—-15 and further theories or
bubble in RMI flattens asymptotically with time, while the computational methods may be able to resolve them.
Layzer-type solution breaks the conservation laws and re-
quires mass flux through the interface.

To conclude, we outline the limitations of our theoretical
approach. The local analysis is applicable as long as the en- The work was supported financially by DOE Grant No.
ergy cascade is insignificant, and the spatial period of the 3IDE-FG02-98ER25363 and by the Alexander von Humboldt
or 2D coherent structure in RMI is invariable. The presentafoundation. The author is grateful to Dr. J. Glimm, Dr. S. I.
tion in terms of moment$2), (4) allows one to describe the Anisimov, Dr. J. Jacobs, Dr. G. Dimonte, Dr. A. Oparin, and
linear regime of the instability29], t<7, and to find the Dr. B. Plohr for discussions.
multiple harmonic regular asymptotic solution in the highly
nonlinear regimet>r, Fig. 1 and 2. In the intermediate
regime of the instability{~ 7, singularities develop and pro-
duce the cascades of energy. The local analysis neither de- The expansions of the nonlinear equations in @gnear
picts the dispersive properties of the flow fior  nor de-  the highly symmetric point of the interfag¢he top of the
scribes the process of generation of high-order harmonics bgubble or spikghave the form
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APPENDIX

0 s+p+g=N N s+p+gq=N-I
2| 2 [(spait(spaol®YP(z) i+ 2 P X (spa)xPy*(zt)
N=1 s,p,q=0 =0 s,p,q=0

N s+p+g=N-I

+x§OQ| EO (spQ)x®yP(z*)%| =0

Zp.q=

for the momentum equation, and

© s+p+g=N N s+p+g=N-—I
2| 2 [(spait(spaoX*YP(z) 0+ 2 Py X (spa)xPy*P(zF)
N=1 s,p,q=0 I=0 s,p,q=0

N s+p+g=N-I
+2 QX (qu>2x25y29<z*>'*) =0
=0 s,p,q=0
for the continuity equation. The coefficients in these expansions have the following form:
( )S+p+q . . .
(spa)= WMZSqu 1 Wwith (000),=0,

1 ( l)s+p+q S,p.q
2i ~2j
(spa)o= > W( —6M 28,2p,qM0,0,0+i1j12:0 (3C5ChCEM i 5 Mo 2i 2p—2j.q-r

2|+l 2j 2]+l
C CZ CqM2|+22]p 1M25 2i,2p—2j,q-r—1" C C Ce MZi,Zj+2,r—lMZs—2i,2p—2j,q—r—l))

with (000),=(001),=0,

_ —1)stp+a s.p.q .
(sqp)1=-— ( ),

M25+223q 1MOOO+ E C2I+1C JperM2i+2,2j,r—1M2:;—2i,2p—2j,q—r
(2s+1)!(2p)!q!

i,j,r=0

s,p.q

(_1)s+p+q 2i ~2j+1
i r
- M23,2p+2,q71|vI O,O,O"_i j§r:—O CZSCZJp CqM 2i,2j+2,r71|vI 2s—2i,2p—2j,9—r

(SAP2=~ Geiizpr Dig

with (000), = (000),=0,
(sp0)={sp Wwith (spg)=0 for all q+0;

036301-7



S. I. ABARZHI PHYSICAL REVIEW E 66, 036301 (2002

(_1)S+p+q S,P.q
_ 2] ~2j
(qu)o—(23+ DI(2p)lq! _2Mzs+2,aa,q—1Mo,o,o+i’j’Z:0 CoLCoCaMoi 2.1~ 1M2s i 2p-2j.q-r | »

(_1)S+p+q ) (_1)s+p+q
(sgp1=— s+ D)I(2p)q) Mosio2,g-1 With (sqp,=-— WMZS,ZerZ,qfl

W|th (000)020, (OOO)_‘_: - MZ,O,—l and (OOO)Z _MO,Z,—l;
| |
Pi=2 2ig,-x¥y' 0, Q=2 2(1—-1)&,-x¥y2 "D with Po=Qy=0,
1=0 i=0

Gia—ix@y2I7Dwith £e=0.
0

In the above expressions, dot marks time derival@’@,z g'/r!(g—r)!, Nis the order of approximation, arid, s, p, q, i, |,
r, |, are integers. In the case of square symmdtry, ;=My 5 c andM.op -1+ Mapioc-1=Mapcri-

For a flow in a gravity field, the termg(t)z|,—, is added on the left-hand side of the momentum equation ifEgand the
coefficient 001),=g(t). The case ofj(t)=g>0 corresponds to the Rayleigh-Taylor instability.
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